Effect of trichloroethylene and tetrachloroethylene on methane oxidation and community structure of methanotrophic consortium

2013 
The methane oxidation rate and community structure of a methanotrophic consortium were analyzed to determine the effects of trichloroethylene (TCE) and tetrachloroethylene (PCE) on methane oxidation. The maximum methane oxidation rate (Vmax ) of the consortium was 326.8 μmol·g-dry biomass−1·h−1, and it had a half-saturation constant (Km ) of 143.8 μM. The addition of TCE or PCE resulted in decreased methane oxidation rates, which were decreased from 101.73 to 5.47–24.64 μmol·g-dry biomass−1·h−1 with an increase in the TCE-to-methane ratio, and to 61.95–67.43 μmol·g-dry biomass−1·h−1 with an increase in the PCE-to-methane ratio. TCE and PCE were non-competitive inhibitors for methane oxidation, and their inhibition constants (Ki ) were 33.4 and 132.0 μM, respectively. When the methanotrophic community was analyzed based on pmoA using quantitative real-time PCR (qRT-PCR), the pmoA gene copy numbers were shown to decrease from 7.3 ± 0.7 × 108 to 2.1–5.0 × 107 pmoA gene copy number · g-dry biomass−1 with an i...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    5
    Citations
    NaN
    KQI
    []