Realization of Ground-State Artificial Skyrmion Lattices at Room Temperature

2016 
Magnetic Skyrmions exhibit topologically protected quantum states, not only offering exciting new mechanisms for ultrahigh density and low dissipation information storage, but also providing an ideal platform for explorations of unique topological phenomena. Prerequisite are systems exhibiting skyrmion lattices at ambient conditions. Here, we demonstrate the realization of artificial Bloch skyrmion lattices over extended areas in their ground state at room temperature by patterning asymmetric magnetic nanodots with controlled circularity on an underlayer film with perpendicular magnetic anisotropy (PMA) [1], shown in Fig. 1.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    0
    Citations
    NaN
    KQI
    []