CO2 adsorption on amine-functionalized clays

2019 
Abstract Carbon capture using amine-modified porous sorbents is one of the main proposed technologies to reduce the CO 2 atmospheric concentration. In this work, a wide series of inexpensive clays have been selected to assess their role as supports of amine-containing sorbents for CO 2 capture. Montmorillonite, bentonite, saponite, sepiolite and palygorskite have been hydrated and functionalized by three routes: (a) grafting with aminopropyl (AP) and diethylenetriamine (DT) organosilanes; (b) impregnation with polyethyleneimine (PEI); and (c) double functionalization by impregnating previously grafted samples. XRD, FTIR and N 2 adsorption-desorption analyses along with nitrogen content and CO 2 adsorption properties (thermogravimetry and fixed bed) have been evaluated for bare and functionalized clays. Under dry conditions (45 °C, 1 bar), grafted and impregnated samples yielded CO 2 uptakes as high as 61.3 and 67.1 mg CO 2 /g ads (for Sepi-DT and Paly-PEI, respectively), with the latter being the best-performing sample in terms of CO 2 uptake. On the contrary, double-functionalized samples displayed poor CO 2 adsorption properties, probably due to pore-blocking problems related to their high organic loading. The presence of 5% H 2 O in the feed gas resulted in CO 2 uptake increments from 17 to 27%. The adsorption performance of AP, DT and PEI-containing samples was maintained after three adsorption-desorption cycles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    39
    Citations
    NaN
    KQI
    []