A Multiscale Modeling and X-Ray CT Exploration of Bearing Failure Mechanisms in a Countersunk Bolted Composite Structure

2021 
To investigate the failure mechanism in composite bolted joints, an in-situ X-Ray computed tomography (XCT) technique was developed and single shear bearing (SSB) tests were performed with quasi-isotropic layup. High-fidelity XCT was explored for the detection and characterization of bearing failure in bolted composite components without removing the fastener. A novel load frame was also introduced for in-situ XCT scan and a preliminary scan was performed. A micro-macro coupling modeling approach was proposed on the basis of continuum damage mechanics (CDM) method and a static bearing model, which was based on micromechanics analysis to consider the residual stress after fiber kinking and matrix cracking under compression in the bearing region. The SSB specimens were modified using a larger bolt diameter to avoid bolt failure and achieve extensive bearing failure. The developed modeling approach was verified using SSB test data by comparing the predicted load displacement response with experimental measurement and the failure patterns obtained from XCT scanning images.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []