Structural Damage Identification in Wind Turbine Blades Using Piezoelectric Active Sensing

2011 
This paper presents a variety of structural health monitoring (SHM) techniques, based on the use of piezoelectric active-sensors, used to determine the structural integrity of wind turbine blades. Lamb wave propagation, frequency response functions, and a time series based method are utilized to analyze the wind turbine blade. For these experiments, a 1m section of a 9m CX100 blade is used. Different types of simulated damage are introduced into this structure and a performance matrix is created to compare the validity and functionality of each technique. Overall, these three methods yielded sufficient damage detection to warrant further investigation into field deployment. Time series analysis shows the most effective and reliable to detect damage while lamb wave testing could locate, as well as detect the onset of damage. This paper summarizes considerations needed to design such SHM systems, experimental procedures and results, and additional issues that can be used as guidelines for future investigations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    17
    Citations
    NaN
    KQI
    []