GIGYF1 loss of function is associated with clonal mosaicism and adverse metabolic health.

2021 
Mosaic loss of chromosome Y (LOY) in leukocytes is the most common form of clonal mosaicism, caused by dysregulation in cell-cycle and DNA damage response pathways. Previous genetic studies have focussed on identifying common variants associated with LOY, which we now extend to rarer, protein-coding variation using exome sequences from 82,277 male UK Biobank participants. We find that loss of function of two genes—CHEK2 and GIGYF1—reach exome-wide significance. Rare alleles in GIGYF1 have not previously been implicated in any complex trait, but here loss-of-function carriers exhibit six-fold higher susceptibility to LOY (OR = 5.99 [3.04–11.81], p = 1.3 × 10−10). These same alleles are also associated with adverse metabolic health, including higher susceptibility to Type 2 Diabetes (OR = 6.10 [3.51–10.61], p = 1.8 × 10−12), 4 kg higher fat mass (p = 1.3 × 10−4), 2.32 nmol/L lower serum IGF1 levels (p = 1.5 × 10−4) and 4.5 kg lower handgrip strength (p = 4.7 × 10−7) consistent with proposed GIGYF1 enhancement of insulin and IGF-1 receptor signalling. These associations are mirrored by a common variant nearby associated with the expression of GIGYF1. Our observations highlight a potential direct connection between clonal mosaicism and metabolic health. Mosaic loss of chromosome Y (LOY) is a common form of clonal mosaicism in leukocytes. Here, the authors extend genetic association analyses to rare variation using exome-sequence data from 82,277 males, finding that loss-of-function alleles in GIGYF1 are associated with six-fold higher susceptibility to both LOY and Type 2 Diabetes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    3
    Citations
    NaN
    KQI
    []