Exploring the sensitivity of gravitational wave detectors to neutron star physics.

2019 
The physics of neutron stars can be studied with gravitational waves emitted from coalescing binary systems. Tidal effects become significant during the last few orbits and can be visible in the gravitational-wave spectrum above 500 Hz. After the merger, the neutron star remnant oscillates at frequencies above 1 kHz and can collapse into a black hole. Gravitational-wave detectors with a sensitivity of ~10^{-24} strain/sqHz at 2-4 kHz can observe these oscillations from a source which is ~100 Mpc away. The current observatories, such as LIGO and Virgo, are limited by shot noise at high frequencies and have a sensitivity of > 2 * 10^{-23} strain/sqHz at 3 kHz. In this paper, we propose an optical configuration of gravitational-wave detectors which can be set up in present facilities using the current interferometer topology. This scheme has a potential to reach 7 * 10^{-25} strain/sqHz at 2.5 kHz without compromising the detector sensitivity to black hole binaries. We argue that the proposed instruments have a potential to detect similar amount of post-merger neutron star oscillations as the next generation detectors, such as Cosmic Explorer and Einstein Telescope. We also optimise the arm length of the future detectors for neutron star physics and find that the optimal arm length is ~20 km. These instruments have the potential to observe neutron star post-merger oscillations at a rate of ~30 events per year with a signal-to-noise ratio of 5 or more.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    137
    References
    77
    Citations
    NaN
    KQI
    []