Cortical mechanisms of visual self-recognition

2005 
Several lines of evidence have suggested that visual self-recognition is supported by a special brain mechanism; however, its functional anatomy is of great controversy. We performed an event-related functional magnetic resonance imaging (fMRI) study to identify brain regions selectively involved in recognition of one's own face. We presented pictures of each subject's own face (SELF) and a prelearned face of an unfamiliar person (CONT), as well as two personally familiar faces with high and low familiarity (HIGH and LOW, respectively) to test selectivity of activation to the SELF face. Compared with the CONT face, activation selective to the SELF face was observed in the right occipito-temporo-parietal junction and frontal operculum, as well as in the left fusiform gyrus. On the contrary, the temporoparietal junction in both the hemispheres and the left anterior temporal cortex, which were activated during recognition of HIGH and/or LOW faces, were not activated during recognition of the SELF face. The results confirmed the partial distinction of the brain mechanism involved in recognition of personally familiar faces and that in recognition of one's own face. The right occipito-temporo-parietal junction and frontal operculum appear to compose a network processing motion–action contingency, a role of which in visual self-recognition has been suggested in previous behavioral studies. Activation of the left fusiform gyrus selective to one's own face was consistent with the results of two previous functional imaging studies and a neuropsychological report, possibly suggesting its relationship with lexical processing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    179
    Citations
    NaN
    KQI
    []