Current Ripple Damping Control to Minimize Impedance Network for Single-Phase Quasi-Z Source Inverter System

2016 
The single-phase quasi-Z source inverter (qZSI) topology has recently attracted attention for single-phase grid-tie photovoltaic (PV) applications. However, due to the inherent second-harmonic power flow in single-phase systems, a large qZS network is required to reduce the second-harmonic component of currents and voltages on the dc side. Minimization of the qZS network remains an open issue. This paper proposes a technique that minimizes the qZS capacitance and inductance of the single-phase qZSI topology by employing dc-side low-frequency current ripple damping control. Through analysis of power flow, a second-harmonic power model is derived and the ripple power is analyzed for minimization of the qZS network. A current ripple damping control is proposed to ensure suppression of second-harmonic power flow through the inductors. Simulation and experimental results verify the theoretical analysis, damping control, and the proposed design minimization of the qZS network for the single-phase topology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    63
    Citations
    NaN
    KQI
    []