High voltage nanosecond pulse generator based on avalanche transistor Marx bank circuit and linear transformer driver.

2021 
Avalanche transistor Marx bank circuits (MBCs) are widely used in high voltage repetitive nanosecond pulse generators, but problems exist with respect to increasing the output voltage due to the limited pulsed current. Accordingly, a novel topology based on an avalanche transistor MBC combined with a linear transformer driver is proposed, the latter of which exhibits advantageous stress distribution and modular structure. A four-module prototype with four units in each module is developed in the laboratory. The output characteristics are investigated by varying important parameters such as the main capacitance, the number of conducting units, the number of cascaded modules, and the trigger signal time delay. The test results verify the validity of the proposed topology. For a 50 Ω resistive load, the prototype can generate pulses with an amplitude of 10.9 kV, a rise time of 3.3 ns, and a voltage superposition efficiency of 89%. The topology proposed in this paper may help to provide a method to further improve the output performance of avalanche transistor MBCs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    3
    Citations
    NaN
    KQI
    []