Non-Equilibrium Steady State of the Lieb-Liniger model: exact treatment of the Tonks Girardeau limit

2020 
Aiming at studying the emergence of Non-Equilibrium Steady States (NESS) in quantum integrable models by means of an exact analytical method, we focus on the Tonks-Girardeau or hard-core boson limit of the Lieb-Liniger model. We consider the abrupt expansion of a gas from one half to the entire confining box, a prototypical case of inhomogeneous quench, also known as "geometric quench". Based on the exact calculation of quench overlaps, we develop an analytical method for the derivation of the NESS by rigorously treating the thermodynamic and large time and distance limit. Our method is based on complex analysis tools for the derivation of the asymptotics of the many-body wavefunction, does not make essential use of the effectively non-interacting character of the hard-core boson gas and is sufficiently robust for generalisation to the genuinely interacting case.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    95
    References
    1
    Citations
    NaN
    KQI
    []