Effect of neutron and γ-ray on charge-coupled device for vacuum/extreme ultraviolet spectroscopy in deuterium discharges of large helical device

2018 
A charge-coupled device (CCD) is widely used as a detector of vacuum spectrometers in fusion devices. Recently, a deuterium plasma experiment has been initiated in a Large Helical Device (LHD). Totally 3.7 × 1018 neutrons have been yielded with energies of 2.45 MeV (D-D) and 14.1 MeV (D-T) during the deuterium experiment over four months. Meanwhile, γ-rays are radiated from plasma facing components and laboratory structural materials in a wide energy range, i.e., 0.01-12.0 MeV, through the neutron capture. It is well known that these neutrons and γ-rays bring serious problems to the CCD system. Then, several CCDs of vacuum ultraviolet/extreme ultraviolet/X-ray spectrometers installed at different locations on LHD for measurements of spectra and spatial profiles of impurity emission lines are examined to study the effect of neutrons and γ-rays. An additional CCD placed in a special shielding box made of 10 cm thick polyethylene contained 10% boron and 1.5 cm thick lead is also used for the detailed analysi...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    1
    Citations
    NaN
    KQI
    []