Observational Supervision for Medical Image Classification Using Gaze Data.

2021 
Deep learning models have demonstrated favorable performance on many medical image classification tasks. However, they rely on expensive hand-labeled datasets that are time-consuming to create. In this work, we explore a new supervision source to training deep learning models by using gaze data that is passively and cheaply collected during a clinician’s workflow. We focus on three medical imaging tasks, including classifying chest X-ray scans for pneumothorax and brain MRI slices for metastasis, two of which we curated gaze data for. The gaze data consists of a sequence of fixation locations on the image from an expert trying to identify an abnormality. Hence, the gaze data contains rich information about the image that can be used as a powerful supervision source. We first identify a set of gaze features and show that they indeed contain class-discriminative information. Then, we propose two methods for incorporating gaze features into deep learning pipelines. When no task labels are available, we combine multiple gaze features to extract weak labels and use them as the sole source of supervision (Gaze-WS). When task labels are available, we propose to use the gaze features as auxiliary task labels in a multi-task learning framework (Gaze-MTL). On three medical image classification tasks, our Gaze-WS method without task labels comes within 5 AUROC points (1.7 precision points) of models trained with task labels. With task labels, our Gaze-MTL method can improve performance by 2.4 AUROC points (4 precision points) over multiple baselines.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    3
    Citations
    NaN
    KQI
    []