Functional characterization of splicing regulatory elements

2021 
Background: RNA binding protein-RNA interactions mediate a variety of processes including pre-mRNA splicing, translation, decay, polyadenylation and many others. Previous high-throughput studies have characterized general sequence features associated with increased and decreased splicing of certain exons, but these studies are limited by not knowing the mechanisms, and in particular, the mediating RNA binding proteins, underlying these associations. Results: Here we utilize ENCODE data from diverse data modalities to identify functional splicing regulatory elements and their associated RNA binding proteins. We identify features which make splicing events more sensitive to depletion of RNA binding proteins, as well as which RNA binding proteins act as splicing regulators sensitive to depletion. To analyze the sequence determinants underlying RBP-RNA interactions impacting splicing, we assay tens of thousands of sequence variants in a high-throughput splicing reporter called Vex-seq and confirm a small subset in their endogenous loci using CRISPR base editors. Finally, we leverage other large transcriptomic datasets to confirm the importance of RNA binding proteins which we designed experiments around and identify additional RBPs which may act as additional splicing regulators of the exons studied. Conclusions: This study identifies sequence and other features underlying splicing regulation mediated specific RNA binding proteins, as well as validates and identifies other potentially important regulators of splicing in other large transcriptomic datasets.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    0
    Citations
    NaN
    KQI
    []