Detailed analysis of chemical corrosion of ultra-thin wires used in drift chamber detectors

2021 
Ultra-thin metallic anodic and cathodic wires are frequently employed in low-mass gaseous detectors for precision experiments, where the amount of material crossed by charged particles must be minimised. We present here the results of an analysis of the mechanical stress and chemical corrosion effects observed in $40$ and $50~{\rm{\mu m}}$ diameter silver plated aluminum wires mounted within the volume of the MEG\,II drift chamber, which caused the breaking of about one hundred wires (over a total of $\approx 12000$). This analysis is based on the accurate inspection of the broken wires by means of optical and electronic microscopes and on a detailed recording of all breaking accidents. We present a simple empirical model which relates the number of broken wires to their exposure time to atmospheric humidity and to their mechanical tension, which is necessary for mechanical stability in the presence of electrostatic fields of several kV/cm. Finally we discuss how wire breakings can be avoided or at least strongly reduced by operating in controlled atmosphere during the mounting stages of the wires within the drift chamber and by choosing a $25\,\%$ thicker wire diameter, which has very small effects on the detector resolution and efficiency and can be obtained by using a safer fabrication technique.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    0
    Citations
    NaN
    KQI
    []