Characterizing hyporheic exchange processes using high‐frequency electrical conductivity‐discharge relationships on subhourly to interannual timescales

2017 
Concentration-discharge (C-Q) relationships are often used to quantify source water contributions and biogeochemical processes occurring within catchments, especially during discrete hydrological events. Yet, the interpretation of C-Q hysteresis is often confounded by complexity of the critical zone, such as numerous source waters and hydrochemical non-stationarity. Consequently, researchers must often ignore important runoff pathways and geochemical sources/sinks, especially the hyporheic zone because it lacks a distinct hydrochemical signature. Such simplifications limit efforts to identify processes responsible for the transience of C-Q hysteresis over time. To address these limitations, we leverage the hydrologic simplicity and long-term, high-frequency Q and electrical conductivity (EC) data from streams in the McMurdo Dry Valleys, Antarctica. In this two end-member system, EC can serve as a proxy for the concentration of solutes derived from the hyporheic zone. We utilize a novel approach to decompose loops into sub-hysteretic EC-Q dynamics to identify individual mechanisms governing hysteresis across a wide range of timescales. We find that hydrologic and hydraulic processes govern EC response to diel and seasonal Q variability and that the effects of hyporheic mixing processes on C-Q transience differ in short and long streams. We also observe that variable hyporheic turnover rates govern EC-Q patterns at daily to interannual timescales. Lastly, sub-hysteretic analysis reveals a period of interannual freshening of glacial meltwater streams related to the effects of unsteady flow on hyporheic exchange. The sub-hysteretic analysis framework we introduce may be applied more broadly to constrain the processes controlling C-Q transience and advance understanding of catchment evolution.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    76
    References
    12
    Citations
    NaN
    KQI
    []