The Effect of Human Fetal Liver-Derived Mesenchymal Stem Cells on CD34+ Hematopoietic Stem Cell Repopulation in NOD/Shi-scid/IL-2Rãnull Mice

2011 
Abstract Mesenchymal stem cells (MSCs) are progenitors that are capable of differentiating into mesenchymal tissues. They are known to support allogeneic hematopoietic stem cell transplantation by facilitating engraftment without increasing the risk of graft-versus-host disease. We optimized culture conditions for human fetal liver-derived MSCs (hFL-MSCs) to investigate the role of hFL-MSCs on repopulation of hematopoietic stem cells in NOD/Shi-scid/IL-2Rγ null (NOG) mice using CD34 + hematopoietic stem cells (HSCs) derived from umbilical cord blood (UCB). FL-MSCs and CD34 + HSCs were prepared from fetal liver and UCB, respectively. Twenty-four hours after irradiation, CD34 + HSCs and hFL-MSCs were injected intravenously and intratibially into NOG mice. During 24 weeks posttransplantation, engraftment levels of human cells were analyzed in bone marrow, peripheral blood, and spleen of transplanted mice by flow cytometry. hFL-MSCs showed a fibroblast-like morphology and immunophenotypic characteristics appropriate for MSCs. hFL-MSCs prolonged the survival of NOG mice that had been cotransplanted with UCB CD34 + cells. Fluorescence-activated cell-sorting analysis showed that engraftment of human cells was increased by cotransplantation of hFL-MSCs. However, significant enhancement of human cell engraftment was not detected in NOG mice regardless of the number of cotransplanted MSCs. Although survival of repopulating NOG mice and engraftment of human cells were prolonged by cotransplantation of hFL-MSCs, 8.0 × 10 6 MSCs were not sufficient to increase HSC engraftment in irradiated NOG mice in vivo.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    5
    Citations
    NaN
    KQI
    []