A Dy(III) Fluorescent Single-Molecule Magnet Based on a Rhodamine 6G Ligand

2021 
The complexes of lanthanide metals, especially dysprosium, can generally exhibit excellent magnetic properties. By means of modifying ligands, dual functions or even multi-functions can be achieved. Here, we synthesized an eight-coordinate Dy(III) complex 1, [Dy(HL-o)2(MeOH)2](ClO4)3·4.5MeOH, which is single-molecule magnet (SMM), and the introduction of the rhodamine 6G chromophore in the ring-opened ligand HL-o realizes ligand-centered fluorescence in addition to SMM. Magnetic measurements and ab initio calculations indicate that the magnetic relaxation for complex 1 should be due to the Raman relaxation process. Studies on magneto-structural correlationship of the rhodamine salicylaldehyde hydrazone Dy(III) complexes show that the calculated energy of the first Kramers Doublet (EKD1) is basically related to the Ophenoxy-Dy-Ophenoxy bond angle, i.e., the larger Ophenoxy-Dy-Ophenoxy bond angle corresponds to a larger EKD1.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    0
    Citations
    NaN
    KQI
    []