Numerical research on kerosene/air rotating detonation engines under different injection total temperatures

2020 
Abstract In this paper, an improved κ-CNI scheme CE/SE Euler solver with chemical source terms is applied to investigate the propagation characteristics and propulsive performance of kerosene/air rotating detonation engines under different injection total temperatures (300 K, 600 K, 800 K) and different injection area ratios (1, 0.8, 0.4). A two-step chemical reaction model of kerosene is employed to calculate the reaction rate of the premixed kerosene/air mixture. The numerical results indicate that decreasing the area ratio leads to the appearance of the burned gas in the triangular fresh mixture layer. With the increase of injection total temperature, the burned gas in the triangular fresh mixture layer will induce deflagration, which influences the propagation velocity and propagation mode. A double-wave mode is observed for the case with the injection total temperature of 800 K and the injection area ratio of 0.4. Besides, with the increase of injection total temperature, the fuel mass rate and thrust decrease while the specific impulse increases. With the decrease of the area ratio, the fuel mass rate and the thrust decrease while the specific impulse increases. The present paper reveals the flow field structure and detonation properties of the kerosene/air rotating detonation waves under high inlet total temperatures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    8
    Citations
    NaN
    KQI
    []