Single-cell RNA sequencing reveals in vivo signatures of SARS-CoV-2-reactive T cells through 'reverse phenotyping'

2020 
The in vivo phenotypic profile of T cells reactive to severe acute respiratory syndrome (SARS)-CoV-2 antigens remains poorly understood. Conventional methods to detect antigen-reactive T cells require in vitro antigenic re-stimulation or highly individualized peptide-human leukocyte antigen (pHLA) multimers. Here, we used single-cell RNA sequencing to identify and profile SARS-CoV-2-reactive T cells from Coronavirus Disease 2019 (COVID-19) patients. To do so, we induced transcriptional shifts by antigenic stimulation in vitro and took advantage of natural T cell receptor (TCR) sequences of clonally expanded T cells as barcodes for 9reverse phenotyping9. This allowed identification of SARS-CoV-2-reactive TCRs and revealed phenotypic effects introduced by antigen-specific stimulation. We characterized transcriptional signatures of currently and previously activated SARS-CoV-2-reactive T cells, and showed correspondence with phenotypes of T cells from the respiratory tract of patients with severe disease in the presence or absence of virus in independent cohorts. Reverse phenotyping is a powerful tool to provide an integrated insight into cellular states of SARS-CoV-2-reactive T cells across tissues and activation states.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    3
    Citations
    NaN
    KQI
    []