Nucleon and $\Delta$ elastic and transition form factors

2014 
We compute nucleon and Delta elastic and transition form factors, and compare predictions made using a framework built upon a Faddeev equation kernel and interaction vertices that possess QCD-like momentum dependence with results obtained using a vector-vector contact-interaction. The comparison emphasises that experiment is sensitive to the momentum dependence of the running couplings and masses in the strong interaction sector of the Standard Model and highlights that the key to describing hadron properties is a veracious expression of dynamical chiral symmetry breaking in the bound-state problem. Amongst the results we describe, the following are of particular interest: $G_E^p(Q^2)/G_M^p(Q^2)$ possesses a zero at $Q^2=9.5GeV^2$; any change in the interaction which shifts a zero in the proton ratio to larger $Q^2$ relocates a zero in $G_E^n(Q^2)/G_M^n(Q^2)$ to smaller $Q^2$; and there is likely a value of momentum transfer above which $G_E^n>G_E^p$. Regarding the $\Delta(1232)$-baryon, we find that, inter alia: the electric monopole form factor exhibits a zero; the electric quadrupole form factor is negative, large in magnitude, and sensitive to the nature and strength of correlations in the $\Delta(1232)$ Faddeev amplitude; and the magnetic octupole form factor is negative so long as rest-frame P- and D-wave correlations are included. In connection with the N-to-Delta transition, the momentum-dependence of the magnetic transition form factor, $G_M^\ast$, matches that of $G_M^n$ once the momentum transfer is high enough to pierce the meson-cloud; and the electric quadrupole ratio is a keen measure of diquark and orbital angular momentum correlations.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    139
    References
    1
    Citations
    NaN
    KQI
    []