Chaotic Flow Patterns from a Deep Plutonic Environment: a Case Study on Natural Magma Mixing

2015 
This work focuses on the mixing between basalt and granite in a deep plutonic environment. The description of mixing patterns and measurements of fractal dimensions, and the evaluation of geochemical data from a Cambro–Ordovician granitic pluton are summarized and discussed. Different morphologic domains within the pluton reveal concentric fragmented and/or folded layers of granite in a gabbro/granite mixed matrix. This stands in contrast to two predominantly regular gabbroic regions. These regular regions are separated by tightly stretched filament areas, in which mixing is enhanced. Sharp and gradational contacts between granitic and gabbroic domains depict the interplay among frozen flows (mingling) and convection-enhanced diffusion processes (mixing). Measurements of fractal dimensions at different scales and analysis of normalized concentration variance for major elements point towards magma mixing: the compositional variability and flow patterns of the studied pluton have been greatly controlled by a natural chaotic mixing process between a granitic and a basaltic end-member. During the mixing process, coeval fractional crystallization no doubt contributed to increasing the complexity of the system. However, since flow, and therefore mixing, stops with temperature decrease, flow patterns must have retained the predominant morphology and composition of the moment at which both contrasting magmas came together and froze. Flow patterns have been preserved. With further temperature decrease, fractional crystallization took over and hybrid rocks were generated from the fractionation of magmas previously mixed in different proportions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    80
    References
    6
    Citations
    NaN
    KQI
    []