Prediction and control of drilling-induced damage in fibre-reinforced polymers using a new hybrid force and temperature modelling approach

2015 
Abstract Reliable force and temperature prediction in drilling of fibre-reinforced polymers (FRPs) is the key to controlling drilling-induced damage. A novel hybrid analytical-numerical model is developed to capture time-varying forces and temperatures during transient and steady-state drilling of FRPs. Although the generalized force model is calibrated using a unidirectional FRP material and a single tool type, it can apply to wide ranges of drilling conditions, tool geometries, and laminate configurations. A methodology to define the damage criteria is presented. Extensive experimental validation confirmed the accurate predictions of delamination and thermal damage; such performance cannot be achieved by any available model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    18
    Citations
    NaN
    KQI
    []