ASSOCIATION BETWEEN SPORULATION AND CELL-WALL DEGRADING ENZYMES IN THE WHEAT PATHOGEN MYCOSPHAERELLA GRAMINICOLA.

2015 
Mycosphaerella graminicola is a hemibiotrophic fungus that causes Septoria tritici blotch (STB), one of the most serious foliar diseases of wheat. STB can occur with a wide range of disease levels on the host, which depend not only on the pathogenicity of fungal strains, but also on the resistance of host cultivars. Here, we investigated the association between the disease level and fungal cell-wall degrading enzyme and protease activities in three wheat cultivars differing in their resistance levels against M. graminicola. The experiments were carried out in the greenhouse using artificial inoculations with the M. graminicola strain T01193. Disease symptoms scored at 21-day post-inoculation (dpi) were significantly higher on the susceptible and moderately resistant cultivars, Alixan and Premio (48% and 42% of diseased leaf area, respectively), than in the resistant one, Altigo (28% of diseased leaf area). Regarding sporulation, the rate of pycnidial density was significantly higher on Alixan (2.9) compared to Premio and Altigo (1.1 and 1.0, respectively). Further biochemical investigations revealed, by 17 dpi, significant fungal beta-1,4-endoxylanase, beta-1,4-endoglucanase and protease activities, whose amounts increased according to the pycnidial density recorded on the infected leaves. At 21 dpi, the amounts of these activities were significantly higher on Alixan compared to Premio and Altigo (0.36 U/mg, 0.63 U/mg and 2.70 mU/mg total proteins on Alixan, 0.09 U/mg, 0.19 U/mg and 0.72 mU/mg total proteins on Premio and 0.05 U/mg, 0.15 U/mg and 0.52 mU/mg total proteins on Altigo for beta-1,4-endoxylanase, beta-1,4-endoglucanase and protease activities, respectively). These results confirm the importance of CWDE and protease activities in the process of fungal sporulation during the necrotrophic phase of M. graminicola.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []