Target-induced formation of multiple DNAzymes in solid-state nanochannels: Toward innovative photoelectrochemical probing of telomerase activity

2019 
Abstract Solid-state nanochannels have great potentials in the vibrant field of photoelectrochemical (PEC) bioanalysis. This work herein demonstrates the innovative use of DNA-decorated nanoporous anodic alumina (NAA) nanochannels for sensitive PEC bioanalysis of telomerase (TE) activity. Specifically, telomerase primer sequences (TS) were initially immobilized within the NAA nanochannels and then extended by TE in the presence of deoxyribonucleoside triphosphates (dNTPs). The as formed single-strand DNA was then directed to hybrid with many partially matched single-strand assisting DNA (aDNA), leading to the formation of multiple DNAzymes by the unmatched parts and the subsequent DNAzyme-stimulated biocatalytic precipitation (BCP) within the nanochannels. Because the inhibited signals of the photoelectrode could be correlated with TE-enabled TS extension, an innovative nanochannels PEC bioanalysis could be realized for probing TE activity. This work features the ingenious use of DNA-associated nanochannels for PEC bioanalysis of TE activity. Given the versatile functions of DNA molecules, the extension of this strategy easily allows for addressing numerous other targets of interest. Also, we envision this work could inspire more interest for the further development of nanochannels PEC bioanalysis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    5
    Citations
    NaN
    KQI
    []