Phosphorylation and Stabilization of ATP Binding Cassette Transporter A1 by Synthetic Amphiphilic Helical Peptides

2004 
Abstract To investigate structural requirement of helical apolipoprotein to phosphorylate and stabilize ATP-binding cassette transporter A1 (ABCA1), synthetic peptides (Remaley, A. T., Thomas, F., Stonik, J. A., Demosky, S. J., Bark, S. E., Neufeld, E. B., Bocharov, A. V., Vishnyakova, T. G., Patterson, A. P., Eggerman, T. L., Santamarina-Fojo, S., and Brewer, H. B. (2003) J. Lipid Res. 44, 828–836) were examined for these activities. L37pA, an l amino acid peptide that contains two class-A amphiphilic helices, and D37pA, the same peptide with all d amino acids, both removed cholesterol and phospholipid from differentiated THP-1 cells more than apolipoproteins (apos) A-I, A-II, and E. Both peptides also mediated lipid release from human fibroblasts WI-38 similar to apoA-I. L2D37pA, an l-peptide whose valine and tyrosine were replaced with d amino acids also promoted lipid release from WI-38 but less so with THP-1, whereas L3D37pA, in which alanine, lysine, and asparatic acid were replaced with d amino acids was ineffective in lipid release for both cell lines. ABCA1 protein in THP-1 and WT-38 was stabilized against proteolytic degradation by apoA-I, apoA-II, and apoE and by all the peptides tested except for L3D37pA, and ABCA1 phosphorylation closely correlated with its stabilization. The analysis of the relationship among these parameters indicated that removal of phospholipid triggers signals for phosphorylation and stabilization of ABCA1. We thus concluded that an amphiphilic helical motif is the minimum structural requirement for a protein to stabilize ABCA1 against proteolytic degradation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    64
    Citations
    NaN
    KQI
    []