Trace sulfur promoted Fe, N-codoped carbon black as electrocatalyst for oxygen reduction reaction

2019 
Abstract Doping carbon materials with Fe and N attracts great attention due to its promising application in preparing ORR electrode with high performance and low cost. Previously, Fe, N-codoped catalyst (Fe/N/C) had been synthesized via a simple one-pot method using carbon materials, dopamine and FeCl 3 by our group. However, the unstable activity and low selectivity (electron transfer number of ∼3.5) are key problems that should be solved. Herein, trace sulfur has been introduced into Fe, N-codoped carbon black by using 2-mercaptoethanol as an adhesive sulfur precursor. By the doping of trace S atoms (∼0.25 at%) into Fe, N-codoped carbon frameworks, the ORR performance has been obviously improved simply without any re-treatment process, such as acid-etching or nitrogen supplement. The mechanism of this process has been systematically investigated by changing the amount of initial sulfur precursor. A moderate amount of trace sulfur can effectively enhance the ORR performance of Fe, N-codoped carbon black due to suitable interactions among Fe, N, S and C elements. Both the content and the state of Fe and N species on the surface of carbon black can be changed and controlled by trace sulfur. The as-synthesized 1.0 S Fe/N/C catalyst exhibits a good ORR activity (E 1/2  = 0.749 V, J k  = 54.56 mA cm −2 ) and a total 4-electron selectivity. 1.0 S Fe/N/C also shows better catalytic stability and methanol tolerance than 20 wt% Pt/C.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    9
    Citations
    NaN
    KQI
    []