Occupational exposure to solvents and lung function decline: A population based study

2019 
Rationale While cross-sectional studies have shown associations between certain occupational exposures and lower levels of lung function, there was little evidence from population-based studies with repeated lung function measurements. Objectives We aimed to investigate the associations between occupational exposures and longitudinal lung function decline in the population-based Tasmanian Longitudinal Health Study. Methods Lung function decline between ages 45 years and 50 years was assessed using data from 767 participants. Using lifetime work history calendars completed at age 45 years, exposures were assigned according to the ALOHA plus Job Exposure Matrix. Occupational exposures were defined as ever exposed and cumulative exposure -unit- years. We investigated effect modification by sex, smoking and asthma status. Results Compared with those without exposure, ever exposures to aromatic solvents and metals were associated with a greater decline in FEV 1 (aromatic solvents 15.5 mL/year (95% CI −24.8 to 6.3); metals 11.3 mL/year (95% CI −21.9 to – 0.7)) and FVC (aromatic solvents 14.1 mL/year 95% CI −28.8 to – 0.7; metals 17.5 mL/year (95% CI –34.3 to – 0.8)). Cumulative exposure (unit years) to aromatic solvents was also associated with greater decline in FEV 1 and FVC. Women had lower cumulative exposure years to aromatic solvents than men (mean (SD) 9.6 (15.5) vs 16.6 (14.6)), but greater lung function decline than men. We also found association between ever exposures to gases/fumes or mineral dust and greater decline in lung function. Conclusions Exposures to aromatic solvents and metals were associated with greater lung function decline. The effect of aromatic solvents was strongest in women. Preventive strategies should be implemented to reduce these exposures in the workplace.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    8
    Citations
    NaN
    KQI
    []