Modeling Unentangled Polystyrene Melts in Fast ElongationalFlows

2019 
Recent data of unentangled polystyrene melts in startup elongational flow and subsequent relaxation [Matsumiya, Y.; Watanabe, H.; Masubuchi, Y.; Huang, Q.; Hassager, O. Nonlinear Elongational Rheology of Unentangled Polystyrene and Poly(p-Tert-Butylstyrene) Melts. Macromolecules 2018, 51 (23), 9710−9729] are here compared to the predictions of Brownian simulations of Fraenkel chains endowed with a monomeric friction coefficient that decreases with increasing the order parameter of the Kuhn segments. The model compares favorably with all startup data if a time delay in reducing the monomeric friction coefficient is accounted for in the fastest flows, a feature already observed by Matsumiya et al. The same model also describes the relaxation data except for a minor discrepancy in the longest relaxation time, probably due to the imperfect monodispersity of the sample and/or to a minor influence of topological interactions, not strong enough to be called entanglements. A discrepancy is also observed at the be...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    10
    Citations
    NaN
    KQI
    []