HCMV glycoprotein B nucleoside-modified mRNA vaccine elicits antibody responses with greater durability and breadth than MF59-adjuvanted gB protein immunization

2019 
A vaccine to prevent maternal acquisition of human cytomegalovirus (HCMV) during pregnancy is a primary strategy to reduce the incidence of congenital disease. Similarly, vaccination of transplant recipients against HCMV has been proposed to prevent transplant-associated HCMV morbidity. The MF59-adjuvanted glycoprotein B protein subunit vaccine (gB/MF59) is the most efficacious tested to-date for both indications. We previously identified that gB/MF59 vaccination elicited poor neutralizing antibody responses and an immunodominant response against gB antigenic domain 3 (AD-3). Thus, we sought to test novel gB vaccines to improve functional antibody responses and reduce AD-3 immunodominance. Groups of juvenile New Zealand White rabbits were administered 3 sequential doses of full-length gB protein with an MF59-like squalene adjuvant (analogous to clinically-tested vaccine), gB ectodomain protein (lacking AD-3) with squalene adjuvant, or lipid nanoparticle (LNP)-packaged nucleoside-modified mRNA encoding full-length gB. The AD-3 immunodominant IgG response following human gB/MF59 vaccination was closely mimicked in rabbits, with 78% of binding antibodies directed against this region in the full-length gB protein group compared to 1% and 46% in the ectodomain and mRNA-LNP-vaccinated groups, respectively. All vaccines were highly immunogenic with similar kinetics and comparable peak gB-binding and functional antibody responses. Although gB ectodomain subunit vaccination reduced targeting of non-neutralizing epitope AD-3, it did not improve vaccine-elicited neutralizing or non-neutralizing antibody functions. gB nucleoside-modified mRNA-LNP-immunized rabbits exhibited enhanced durability of IgG binding to soluble and cell membrane-associated gB protein as well as HCMV-neutralizing function. Furthermore, the gB mRNA-LNP vaccine enhanced breadth of IgG binding responses against discrete gB peptide residues. Finally, low-magnitude gB-specific T cell activity was observed in the full-length gB protein and mRNA-LNP vaccine groups, though not in ectodomain-vaccinated rabbits. Altogether, these data suggest that the gB mRNA-LNP vaccine candidate, aiming to improve upon the partial efficacy of gB/MF59 vaccination, should be further evaluated in preclinical models.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    0
    Citations
    NaN
    KQI
    []