Photocatalytic enantioselective α-aminoalkylation of acyclic imine derivatives by a chiral copper catalyst

2019 
Copper-based asymmetric photocatalysis has great potential in the development of green synthetic approaches to chiral molecules. However, there are several formidable challenges associated with such a conception. These include the relatively weak visible light absorption, short excited-state lifetimes, incompatibility of different catalytic cycles, and the difficulty of the stereocontrol. We report here an effective strategy by means of single-electron-transfer (SET) initiated formation of radicals and photoactive intermediates to address the long-standing problems. Through elaborate selection of well-matched reaction partners, the chiral bisoxazoline copper catalyst is engaged in the SET process, photoredox catalysis, Lewis acid activation and asymmetric induction. Accordingly, a highly enantioselective photocatalytic α-aminoalkylation of acyclic imine derivatives has been accessed. This strategy sheds light on how to make use of diverse functions of a single transition metal catalyst in one reaction, and offers an economic and simplified approach to construction of highly valuable chiral vicinal diamines. Copper-based asymmetric photocatalysis has great synthetic potential, however it has been rarely exploited due to challenges inherent to such systems. Here, a chiral bisoxazoline copper catalyst is involved in a SET process, photoredox catalysis, Lewis acid activation and asymmetric induction to construct chiral vicinal diamines.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    85
    Citations
    NaN
    KQI
    []