Numerical Simulation of a Low Pressure Turbine Blade Employing Active Flow Control

2007 
High altitude aircraft experience a large drop in the Reynolds number (Re) from take off conditions to cruise conditions. It has been shown in previous research performed by Simon and Volino [1] that this reduction in Re number causes the flow inside the turbine cascades to become laminar, and separate more readily on the suction side of the turbine blade. This boundary-layer separation greatly reduces the efficiency of the turbine and aircraft engine as a whole, and therefore is undesirable. To prevent this loss of efficiency, research will be pursued for active and passive means to delay and/or eliminate the flow separation. Lake et al. [2] used passive boundary layer trip, dimples, and V-grooves in an extensive study to reduce separation on the Pak-B turbine blade. Although these passive techniques were able to reduce the separation at fixed Re numbers, an active flow control method is needed for more efficient separation reduction over a range of Re numbers. Currently, researchers are investigating several different active flow control devices, including pulsating synthetic jets, vortex generator jets (VGJ), and moving protuberances. The proposed study intends to further investigate the mechanism of flow control via synthetic jets, which alternate between suction and blowing, on a low pressure turbine blade utilizing a Large Eddy Simulation (LES) Computational Fluid Dynamics (CFD) solver. Optimum values of the associated parameters such as jet angle, blowing ratio, frequency, duty cycle, etc., of the synthetic jets will be determined. However, before investigation of the effectiveness of synthetic jets, the CFD simulation will be validated with experimental data on VGJ. A description of the implementation is presented along with preliminary results.Copyright © 2006 by ASME
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    0
    Citations
    NaN
    KQI
    []