Global Models of Ridge-Push Force, Geoid, and Lithospheric Strength of Oceanic plates

2017 
An understanding of the transmission of ridge-push related stresses in the interior of oceanic plates is important because ridge-push force is one of the principal forces driving plate motion. Here, I assess the transmission of ridge-push related stresses in oceanic plates by comparing the magnitude of the ridge-push force to the integrated strength of oceanic plates. The strength is determined based on plate cooling and rheological models. The strength analysis includes low-temperature plasticity (LTP) in the upper mantle and assumes a range of possible tectonic conditions and rheology in the plates. The ridge-push force has been derived from the thermal state of oceanic lithosphere, seafloor depth and crustal age data. The results of modeling show that the transmission of ridge-push related stresses in oceanic plates mainly depends on rheology and predominant tectonic conditions. If a lithosphere has dry rheology, the estimated strength is higher than the ridge-push force at all ages for compressional tectonics and at old ages (>75 Ma) for extension. Therefore, under such conditions, oceanic plates may not respond to ridge-push force by intraplate deformation. Instead, the plates may transmit the ridge-push related stress in their interior. For a wet rheology, however, the strength of young lithosphere (<75 Ma) is much less than the ridge-push force for both compressional and extensional tectonics. In this case, the ridge-push related stress may dissipate in the interior of oceanic plates and diffuses by intraplate deformation. The state of stress within a plate depends on the balance of far-field and intraplate forces.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    5
    Citations
    NaN
    KQI
    []