Mul-SNO: A novel prediction tool for S-nitrosylation sites based on deep learning methods.

2021 
Protein s-nitrosylation (SNO is one of the most important post-translational modifications and is formed by the covalent modification of nitric oxide and cysteine residues. Extensive studies have shown that SNO plays a pivotal role in the plant immune response and treating various major human diseases. In recent years, SNO sites have become a hot research topic. Traditional biochemical methods for SNO site identification are time-consuming and costly. In this study, we developed an economical and efficient SNO site prediction tool named Mul-SNO. Mul-SNO ensembled current popular and powerful deep learning model bidirectional long short-term memory (BiLSTM and bidirectional encoder representations from Transformers (BERT . Compared with existing state-of-the-art methods, Mul-SNO obtained better ACC of 0.911 and 0.796 based on 10-fold cross-validation and independent data sets, respectively. The prediction server can be obtained for free at http://lab.malab.cn/~mjq/Mul-SNO/.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []