Noninvasive evaluation of aortic stenosis severity utilizing Doppler ultrasound and electrical bioimpedance

1988 
Abstract Aortic valve area was calculated noninvasively in 30 patients with aortic stenosis undergoing cardiac catheterization. Continuous wave Doppler ultrasound was employed to estimate the mean transvalvular pressure gradient. The mean left ventricular outflow tract flow velocity and cross-sectional area were determined from pulsed Doppler and two-dimensional ultrasound recordings. Electrical Irans-thoracic bioimpedance cardiography performed simultaneously with the ultrasonic study and repeated at the time of catheterization measured heart rate, systolic ejection period and cardiac output. These noninvasive data permitted calculation of aortic valve area using the Gorlin equation (range 0.21 to 1.75 cm 2 ) and the continuity equation (range 0.25 to 1.9 cm 2 ). Subsequent cardiac catheterization showed valve area to range from 0.21 to 1.75 cm 2 . The mean Doppler pressure gradient estimate was highly predictive of the gradient measured at catheterization (r = +0.92, SEE = 10). Bioimpedance cardiac output measurements agreed with the average of Fick and indicator dye estimates (r = +0.90, SEE = 0.52). Valve area estimates utilizing continuous wave Doppler ultrasound and electrical bioimpedance were superior (r = +0.91, SEE = 0.12) to estimates obtained utilizing the continuity equation (r = +0.76, SEE = 0.29) and were more reliable in the detection of patients with severe aortic stenosis (9 of 11 versus 6 of 11). These data show that 1) electrical bioimpedance methods accurately estimate cardiac output in the presence of aortic stenosis; 2) the hybridized bioimpedance-Doppler ultrasound method yields accurate estimates of aortic stenosis area; and 3) the speed, accuracy and cost-effectiveness of aortic stenosis evaluation may be unproved by this hybridized approach.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    21
    Citations
    NaN
    KQI
    []