Spatio-temporal variations in glacier surface velocity in theHimalayas

2021 
Abstract. Glacier evolution with time provides important information about climate variability. Here we investigate glacier surface velocity in the Himalayas and analyse the patterns of glacier flow. We collect 220 scenes of Landsat-7 panchromatic images between 1999 and 2000, and Sentinel-2 panchromatic images between 2017 and 2018, to calculate surface velocities of 36,722 glaciers during these two periods. We then derive velocity changes between 1999 and 2018, based on which we perform a detailed analysis of motion of each individual glacier, and noted that the changes are spatially heterogeneous. Of all the glaciers, 32 % have speeded up, 24.5 % have slowed down, and the rest 43.5 % remained stable. The amplitude of glacier slowdown, as a result of glacier mass loss, is remarkably larger than that of speedup. At regional scales, we found that glacier surface velocity in winter has uniformly decreased in the western part of the Himalayas between 1999 and 2018, whilst increased in the eastern part; this contrasting difference may be associated with decadal changes in accumulation and/or melting under different climatic regimes. We also found that the overall trend of surface velocity exhibits seasonal variability: summer velocity changes are positively correlated with mass loss, whereas winter velocity changes show a negative correlation. Our study suggests that glacier velocity changes in the Himalayas are more spatially and temporally heterogeneous than previously thought, emphasising complex interactions between glacier dynamics and environmental forcing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []