Metabolic reprogramming mediates hippocampal microglial M1 polarization in response to surgical trauma causing perioperative neurocognitive disorders.

2021 
BACKGROUND Microglial polarization toward pro-inflammatory M1 phenotype are major contributors to the development of perioperative neurocognitive disorders (PNDs). Metabolic reprogramming plays an important role in regulating microglial polarization. We therefore hypothesized that surgical trauma can activate microglial M1 polarization by metabolic reprogramming to induce hippocampal neuroinflammation and subsequent postoperative cognitive impairment. METHODS We used aged mice to establish a model of PNDs, and investigated whether surgical trauma induced metabolic reprograming in hippocampus using PET/CT and GC/TOF-MS based metabolomic analysis. We then determined the effect of the glycolytic inhibitor 2-deoxy-D-glucose (2-DG) on hippocampal microglial M1 polarization, neuroinflammation, and cognitive function at 3 d after surgery. RESULTS We found that surgery group had less context-related freezing time than either control or anesthesia group (P   0.05). The level of Iba-1 fluorescence intensity in hippocampus were significantly increased in surgery group than that in control group (P < 0.05) accompanied by activated morphological changes of microglia and increased expression of iNOS/CD86 (M1 marker) in enriched microglia from hippocampus (P < 0.05). PET/CT and metabolomics analysis indicated that surgical trauma provoked the metabolic reprogramming from oxidative phosphorylation to glycolysis in hippocampus. Inhibition of glycolysis by 2-DG significantly alleviated the surgical trauma induced increase of M1 (CD86+CD206-) phenotype in enriched microglia from hippocampus and up-regulation of pro-inflammatory mediators (IL-1β and IL-6) expression in hippocampus. Furthermore, glycolytic inhibition by 2-DG ameliorated the hippocampus dependent cognitive deficit caused by surgical trauma. CONCLUSIONS Metabolic reprogramming is crucial for regulating hippocampal microglial M1 polarization and neuroinflammation in PNDs. Manipulating microglial metabolism might provide a valuable therapeutic strategy for treating PNDs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    0
    Citations
    NaN
    KQI
    []