Bayesian calibration of strength parameters using hydrocode simulations of symmetric impact shock experiments of Al-5083

2018 
Predictive modeling of materials requires accurately parameterized constitutive models. Parameterizing models that describe dynamic strength and plasticity require experimentally probing materials in a variety of strain rate regimes. Some experimental protocols (e.g., plate impact) probe the constitutive response of a material using indirect measures such as free surface velocimetry. Manual efforts to parameterize constitutive models using indirect experimental measures often lead to non-unique optimizations without quantification of parameter uncertainty. This study uses a Bayesian statistical approach to find model parameters and to quantify the uncertainty of the resulting parameters. The technique is demonstrated by parameterizing the Johnson-Cook strength model for aluminum alloy 5083 by coupling hydrocode simulations and velocimetry measurements of a series of plate impact experiments. Simulation inputs and outputs are used to calibrate an emulator that mimics the outputs of the computationally inte...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    18
    Citations
    NaN
    KQI
    []