Parametric study of thermal effects in a capillary dielectric-barrier discharge related to plasma jet production: Experiments and numerical modelling

2018 
In the present work, a capillary dielectric-barrier discharge of the coaxial electrode configuration, commonly employed to atmospheric-pressure cold plasma jet production, is studied in terms of thermal effects. The discharge is driven by sinusoidal high voltage in the kHz range and operates with helium gas channeled into a capillary dielectric tube having one end opened to the atmospheric air. The voltage amplitude and frequency, gas flow rate, and discharge volume are varied independently, and thermal effects are investigated by experimentally acquired results coupled with numerically determined data. The experiments refer to electrical power measurements, time-resolved temperature measurements, infrared imaging, and high resolution optical emission spectroscopy. The numerical modelling incorporates an electro-hydrodynamic force in the governing equations to take into account the helium-air interplay and uses conjugate heat transfer analysis. The comparison between experimental and numerical data shows ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    10
    Citations
    NaN
    KQI
    []