Long-Range Microwave Mediated Interactions Between Electron Spins

2019 
Entangling gates for electron spins in semiconductor quantum dots are generally based on exchange, a short-ranged interaction that requires wavefunction overlap. Coherent spin-photon coupling raises the prospect of using photons as long-distance interconnects for spin qubits. Realizing a key milestone for spin-based quantum information processing, we demonstrate microwave-mediated spin-spin interactions between two electrons that are physically separated by more than 4 mm. Coherent spin-photon coupling is demonstrated for each individual spin using microwave transmission spectroscopy. An enhanced vacuum Rabi splitting is observed when both spins are tuned into resonance with the cavity, indicative of a coherent spin-spin interaction. Our results demonstrate that microwave-frequency photons can be used as a resource to generate long-range two-qubit gates between spatially separated spins.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    4
    Citations
    NaN
    KQI
    []