Effect of condensable species on particulate fouling

2013 
The flue gases emanating from the combustion of fuels or gasification process invariably comprise particulate matter and many chemical species in vapor form. The temperature of the flue gases gradually reduces when passing through different sections of heat exchanger, such as the superheater, evaporator, and so on. If the temperatures of the heat exchanger tube surface and the gas phase are favorable for condensation, the chemical species in the vapor form will condense on the particles and on the tube surface. The particle deposition behavior under these conditions is drastically different from the one observed in dry particulate fouling. In order to model the particle deposition under such circumstances, it is important to evaluate the criteria for particle adhesion to the surface. Impaction experiments of particles impacting a surface coated with a thin liquid film and particles that are coated with a liquid film impacting over a dry surface are performed to evaluate the limiting parameters under which...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    5
    Citations
    NaN
    KQI
    []