Graphene oxide promotes the differentiation of mouse embryonic stem cells to dopamine neurons

2014 
Aim: Nanoparticles are easier to pass through cell membranes, and they are considered to be the ideal biocompatible and mechanically stable platforms for supporting stem cell growth and differentiation. The aim of this study is to determine the effects of carbon nanotubes (CNTs), graphene oxide (GO) and graphene (GR) on the dopamine neural differentiation of mouse embryonic stem cells (ESCs). Materials & methods: GO was prepared according to a modified Hummers method. GR was synthesized by reduction of GO via L-ascorbic acid as a reductant in an aqueous solution at room temperature. CNTs were fabricated by chemical vapor deposition method. ESCs were differentiated by a stromal cell-derived inducing activity (SDIA) method after 10 days coculture with PA6 cells. The dopamine neural differentiation of the ESCs-GFP was examined by immunocytochemistry and real-time PCR. Results: We found that only GO could effectively promote dopamine neuron differentiation after induction of SDIA and further enhance dopamine ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    95
    Citations
    NaN
    KQI
    []