Positional Isomers of Isocyanoazulenes as Axial LigandsCoordinated to Ruthenium(II) Tetraphenylporphyrin: Fine-Tuning Redoxand Optical Profiles

2019 
Two isomeric ruthenium(II)/5,10,15,20-tetraphenylporphyrin complexes featuring axially coordinated redox-active, low-optical gap 2- or 6-isocyanoazulene ligands have been isolated and characterized by NMR, UV–vis, and magnetic circular dichroism (MCD) spectroscopic methods, high-resolution mass spectrometry, and single-crystal X-ray crystallography. The UV–vis and MCD spectra support the presence of the low-energy, azulene-centered transitions in the Q band region of the porphyrin chromophore. The first coordination sphere in new L2RuTPP complexes reflects compressed tetragonal geometry. The redox properties of the new compounds were assessed by electrochemical and spectroelectrochemical means and correlated with the electronic structures predicted by density functional theory and CASSCF calculations. Both experimental and theoretical data are consistent with the first two reduction processes involving the axial azulenic ligands, whereas the oxidation profile (in the direction of increasing potential) is ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    4
    Citations
    NaN
    KQI
    []