Word- and Partition-Level Write Variation Reduction for Improving Non-Volatile Cache Lifetime

2017 
Non-volatile memory technologies are among the most promising technologies for implementing the main memories and caches in future microprocessors and replacing the traditional DRAM and SRAM technologies. However, one of the most challenging design issues of the non-volatile memory technologies is the limited write. In this article, we first propose to exploit the narrow-width values to improve the lifetime of non-volatile last-level caches with word-level write variation reduction. Leading zeros masking scheme is proposed to reduce the write stress to the upper half of the narrow-width data. To balance the write variations between the upper half and the lower half of the narrow-width data, two swapping schemes, the swap on write (SW) and swap on replacement (SRepl), are proposed. Two existing optimization schemes, the multiple dirty bit (MDB) and read before write (RBW), are adopted with our word-level swapping design. To further reduce the write variation on the partition level, we propose to exploit the cache partitioning design to improve the lifetime. Based on the observation that different applications demonstrate different cache access (write) behaviors, we propose to partition the last-level cache for different applications and balance the write variations by partition swapping. Both software-based and hardware-based partitioning and swapping schemes are proposed and evaluated for different situations. Our experimental results show that both our word- and partition-level designs can improve the lifetime of the non-volatile caches effectively with low performance and energy overheads.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    5
    Citations
    NaN
    KQI
    []