Hot needles can confirm accurate lesion sampling intraoperatively using [18F]PSMA-1007 PET/CT-guided biopsy in patients with suspected prostate cancer

2021 
Prostate-specific membrane antigen (PSMA)-targeted PET is increasingly used for staging prostate cancer (PCa) with high accuracy to detect significant PCa (sigPCa). [68 Ga]PSMA-11 PET/MRI-guided biopsy showed promising results but also persisting limitation of sampling error, due to impaired image fusion. We aimed to assess the possibility of intraoperative quantification of [18F]PSMA-1007 PET/CT uptake in core biopsies as an instant confirmation for accurate lesion sampling. In this IRB-approved, prospective, proof-of-concept study, we included five consecutive patients with suspected PCa. All underwent [18F]PSMA-1007 PET/CT scans followed by immediate PET/CT-guided and saturation template biopsy (3.1 ± 0.3 h after PET). The activity in biopsy cores was measured as counts per minute (cpm) in a gamma spectrometer. Pearson’s test was used to correlate counts with histopathology (WHO/ISUP), tumor length, and membranous PSMA expression on immunohistochemistry (IHC). In 43 of 113 needles, PCa was present. The mean cpm was overall significantly higher in needles with PCa (263 ± 396 cpm) compared to needles without PCa (73 ± 44 cpm, p < 0.001). In one patient with moderate PSMA uptake (SUVmax 8.7), 13 out of 24 needles had increased counts (100–200 cpm) but only signs of inflammation and PSMA expression in benign glands on IHC. Excluding this case, ROC analysis resulted in an AUC of 0.81, with an optimal cut-off to confirm PCa at 75 cpm (sens/spec of 65.1%/87%). In all 4 patients with PCa, the first or second PSMA PET-guided needle was positive for sigPCa with high counts (156–2079 cpm). [18F]PSMA-1007 uptake in PCa can be used to confirm accurate lesion sampling of the dominant tumor intraoperatively. This technique could improve confidence in imaging-based biopsy guidance and reduce the need for saturation biopsy. NCT03187990, 15/06/2017.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    0
    Citations
    NaN
    KQI
    []