Vortex Suppression and Flow Pattern Analysis of a Hydrofoil with Parallel Grooves

2021 
As one of the typical negative factors affecting the vortex structure and flow characteristics of hydraulic machinery, the TLV has a non-negligible impact on the energy performance. In order to improve the utilization efficiency of hydraulic machinery in marine energy, the parallel grooves structure is proposed and applied to the NACA0009 hydrofoil. Subsequently, an exhaustive numerical analysis is carried out adopting the SST k-ω turbulence model, and the effects of the position and spacing on the suppression effect and flow characteristics are investigated. The presence of the parallel grooves leads to a decrease in the lift-to-drag ratio of the hydrofoil within 5%, but it can effectively suppress the development of TLV and reduce the area of TLV. The parallel grooves destroy the structure of PTLV and STLV, and the spacing and position have a greater influence on the flow characteristics of the hydrofoil. In order to take the TLV suppression effect and the energy performance of the hydrofoil into account, the L3T1 structure is recommended.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    0
    Citations
    NaN
    KQI
    []