Inhibition of enzymes and Pseudomonas tolaasii growth on Agaricus bisporus following treatment with surface dielectric barrier discharge plasma

2021 
Abstract In this study the applicability of cold plasma, produced by surface dielectric barrier discharge (SDBD), to inactivate Pseudomonas tolaasii (P.tolaasii), polyphenol oxidase (PPO) and peroxidase (POD) enzymes, as well as its impact on quality parameters such as, color, texture, pH and weight loss were evaluated. The study evidently shows that treating with combination of 30% hydrogen peroxide vapor)with flow rate of 0.47 mL min−1) and argon (H2O2 + Ar) for 180 s is capable of reducing the activity of PPO (0.17 U min−1 g−1 FW) and POD (0.21 U min−1 g−1 FW) and increasing the SOD enzyme (16.29 U g−1 FW) in a 21-day storage period compared to control samples. This is while the quality characteristics of button mushroom are preserved during storage after such treatment. Industrial relevance This study provides information of A. bisporus storage during 21-day period after SDBD plasma treatment, which is rarely. Greater inactivation of P. tolaasii after 180 s treatment with combination of hydrogen peroxide vapor and air (H2O2 + air) was shown compared to control samples, but this treatment caused also slightly degradation of button mushroom color. A better reduction of PPO and POD enzyme activity as well as further increase of SOD enzyme activity was observed following treatment with 180 s of H2O2 + Ar gas in a 21-day storage period. This research work contributes to the understanding SDBD plasma induced effects on the shelf-life of button mushroom and could be a basis for a possible industrial implementation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    0
    Citations
    NaN
    KQI
    []