Rotograd: Dynamic Gradient Homogenization for Multitask Learning

2021 
GradNorm (Chen et al., 2018) is a broadly used gradient-based approach for training multitask networks, where different tasks share, and thus compete during learning, for the network parameters. GradNorm eases the fitting of all individual tasks by dynamically equalizing the contribution of each task to the overall gradient magnitude. However, it does not prevent the individual tasks’ gradients from conflicting, i.e., pointing towards opposite directions, and thus resulting in a poor multitask performance. In this work we propose Rotograd, an extension to GradNorm that addresses this problem by dynamically homogenizing not only the gradient magnitudes but also their directions across tasks. For this purpose,Rotograd adds a layer of task-specific rotation matrices that aligns all the task gradients. Importantly, we then analyze Rotograd (and its predecessor) through the lens of game theory, providing theoretical guarantees on the algorithm stability and convergence. Finally, our experiments on several real-world datasets and network architectures show that Rotograd outperforms previous approaches for multitask learning.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    3
    Citations
    NaN
    KQI
    []