DPP4 inhibitor reduces portal hypertension in cirrhotic rats by normalizing arterial hypocontractility.

2021 
Abstract Aims Dipeptidyl peptidase-4 inhibitor (DPP4i), a new antidiabetic agent, is reported to affect the progression of chronic liver diseases. The study aims to investigate the effects of DPP4i on contractile response, splanchnic hemodynamics, and portal pressure in cirrhotic rats. Materials and methods A rat model of carbon tetrachloride-induced cirrhosis was used in this study. Sixteen rats with cirrhosis were treated with DDP4i sitagliptin for 5 consecutive days. Portal and systemic pressures and portal blood flow were measured. Mesenteric arterioles were isolated, and concentration-response curves to norepinephrine (NE) were evaluated. The expression of NADPH oxidase (Nox)1, Nox2, Nox4, and soluble epoxide hydrolase (sEH) were detected. Reactive oxygen species (ROS) and epoxyeicosatrienoic acid (EET) levels in mesenteric arteries were also measured. Key findings In cirrhotic rats, sitagliptin significantly reduced portal blood flow and portal pressure without effects on systemic pressure and reversed the decreased response of mesenteric arterioles to NE in an endothelium-dependent manner. Sitagliptin suppressed the increased Nox4 expression and ROS production. In vitro studies showed that Nox4 inhibitor enhanced arteriolar response to NE and reduced hydrogen peroxide (H2O2) level in cirrhotic rats. Sitagliptin also reduced EET levels and increased sEH expression of mesenteric vessels. Pre-incubation with sEH inhibitor in vitro reversed sitagliptin-induced augmentation of response to NE in cirrhotic rats. Significance DPP4 inhibition by sitagliptin in vivo has beneficial effects on portal hypertension in cirrhotic rats through normalizing arterial hypocontractility. DDP4 inhibitor may be a novel strategy in the treatment of patients with cirrhosis and portal hypertension.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    0
    Citations
    NaN
    KQI
    []