Rates and kinematics of active shortening along the eastern Qilian Shan, China, inferred from deformed fluvial terraces

2015 
In the eastern Qilian Shan, a flight of fluvial terraces developed along the Jinta River valley are deformed across the Nanying anticline. Four individual fluvial terraces are preserved at different elevations above the river, and higher terrace treads are draped by systematically thicker aeolian loess. Optically stimulated luminescence dating of deposits at the base of the loess provides constraints on the timing of surface abandonment; terraces were abandoned at 69 +/- 4 ka B.P. (T4), 57 +/- 4 ka B.P. (T3), and between 34 +/- 3 ka B.P. (T2), respectively. Differential GPS measurement of the terrace profile across the anticline allows reconstruction of subsurface fault geometry; we model terrace deformation above a listric thrust fault with a tip line at 2.2 +/- 0.1 km depth and whose dip shallows systematically to 23 +/- 3 degrees at depth of 5.8 +/- 1.1 km. Combining terrace ages with this model of fault geometry, we estimate a shortening rate of 0.8 +/- 0.2 mm/a across the Nanying fold and a shortening rate of similar to 0.1 mm/a across the mountain front fault since similar to 70 ka B.P. This rate suggests that the frontal fault system along the eastern Qilian Shan accomplishes crustal shortening at rates of approximately 0.9 +/- 0.3 mm/a during late Pleistocene time.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    38
    Citations
    NaN
    KQI
    []